Tema 4.2 (2013)

Apunte Catalán
Universidad Universidad Politécnica de Cataluña (UPC)
Grado Ingeniería de Sistemas de Telecomunicación - 2º curso
Asignatura Funciones y Sistemas Electronicos
Año del apunte 2013
Páginas 17
Fecha de subida 12/11/2014
Descargas 0
Subido por

Vista previa del texto

FISE 4.1. Fundamentals of solar cells T4 (2) - 3 4.1. Fundamentals of solar cells   4.1.1. Introduction 4.1.2. Solar radiation 4.1.3. Basic operation principles of solar cells 4.1.4. Characteristic parameters of solar cells 4.1.5. Equivalent circuit of a solar cell 4.1.6. Solar cell state‐of‐the‐art FISE 4.1.1. Introduction T4 (2) - 4 The market for photovoltaics is rapidly expanding. As prices fall, the number of installed systems will continue to increase.
Typical applications of photovoltaics: ‐ PV power plants ‐ Residential ‐ Utilities interactive or grid connected ‐ Remote Power ‐ Space applications T4 (2) - 5 4.1.2.  Solar Radiation FISE Electromagnetic spectrum =c/f Solar radiation spectrum T4 (2) - 6 4.1.2.  Solar Radiation FISE Main Parameters Spectral Irradiance :  I () or Power Spectral density: ()  Is defined as the power received by a unit surface area in a  wavelength  differential  d . The units are W/ m2 nm.
Irradiance  I  (or G) Is defined as the integral of the Spectral irradiance extended to all wavelength  range of interest. The units are W/m2 ( power density).
Radiation  H Is defined as the time integral of the irradiance extended over a given period of  time, so the Radiation units are  units of energy .
Spectral irradiance W/m2mm I Irradiance W/m2 2 I   I  d 1 I Radiation kWh/m2‐day t2 H   I dt H t1 It is common to find radiation data in J/m2‐day, if a day integration period of time is used, or   most often the energy is given in  kWh/m2‐day, kWh/m2‐month or kWh/m2‐year depending  on the time slot used for the integration of the Irradiance.  FISE 4.1.2.  Solar Radiation T4 (2) - 7 4.1.2.  Solar Radiation T4 (2) - 8 Solar radiation  and PV map  Spain  (kWh/m2‐year) FISE Reference Spectrums Reference Solar Spectrum: AIR MASS x              (AM x) θz x =  1/ cos θz AM0, Spatial Applications AM1,    x=1,  θz=0 AM1.5 G, Earth Applications (global tilt) x=1.5, θz=  48.19° ( Tilt surface 37° ) • T4 (2) - 9 4.1.2.  Solar Radiation FISE AM 1.5 Standard Reference Spectrum: The solar spectral irradiance distribution (diffuse and direct) incident at sea level on a sun‐facing 37  degree tilted surface from horizontal. The atmospheric conditions for  AM 1.5 are: precipitable water vapor 14.2 mm, total ozone 3.4 mm,  turbidity (base e, l=0.5 μm) 0.27 • Standard Test Conditions (STC): Conditions under which a module is  typically tested in a laboratory: (1) irradiance intensity of 1000 W/ m2,  (2) AM1.5 standard reference spectrum, and (3) cell or module  temperature of 25 ± 2 degrees C.
FISE 4.1.3. Basic Operation Principles of solar cells T4 (2) - 10 How solar cell powers an external load When light shines on the crystal and electron‐hole pairs are created, the electrons travel through the load to recombine with the holes.
As long as light is shining on the crystal, the process is repeated:  (1) energy from the light is absorbed by electrons and they are freed from their  resting state (2) electrons are drawn across the junction in the crystal which only permits  movement in one  direction  (3) the electrons move through an  externally‐connected  load to  recombine with the holes they left  behind FISE 4.1.3. Basic Operation Principles of solar cells T4 (2) - 11 When Light Strikes Silicon When light shines on a crystal of pure silicon (A‐B), particles called "electrons" are ejected from silicon atoms and move about the crystal somewhat randomly (C) The place the electron came from is called a "hole". It takes energy from the light to eject the electron from its normal resting place, and energy is released when the electron returns to an atom that is missing an electron, and recombines with a hole (D).
FISE 4.1.4. Characteristic Parameters of solar cells  Current‐Voltage characteristics ‐I Dark I‐V:  qV enKT IL=0 I   Id (V)  Io     1  Illumination I‐V: I = IL ‐ Id (V) n is the ideality factor T4 (2) - 12 FISE 4.1.4. Characteristic Parameters of solar cells  Maximum power point, MPP Voc=nVT ln(IL/Io+1) T4 (2) - 13 Open circuit Voltage Vm Power Isc=I(V=0)=IL Im MPP Short circuit Current FISE Current 4.1.4. Characteristic Parameters of solar cells  Current‐Voltage characteristics T4 (2) - 14 4.1.4. Characteristic Parameters of solar cells  FISE T4 (2) - 15 Fill Factor (FF) and Conversion Efficiency () P  m Pin VmIm Current‐Voltage characteristic  A   ( )d 0 Isc Im MPP I V FF  m m IscVoc  FISE Vm Voc IscVoc FF Pin 4.1.4. Characteristic Parameters of solar cells  Current‐voltage characteristics Temperature dependence Irradiance dependence Current (A) Irradiance increases Voltage (V) T4 (2) - 16 4.1.5. Equivalent circuit of a solar cell FISE T4 (2) - 17 Solar Cell, electric model II Rs, Rp :  Power losses Rs + Id I L V Rp Rs : Front contact ( V>>) - Rp : cell borders ( V <<)  IRs   V  I  Rs   VnV T   I  IL  I o e  1     Rp       FISE IL = f( I, T) Id = f ( Io, n, T) 4.1.6. Solar cell state‐of‐the‐art Best laboratory solar cell conversion efficiencies Current commercial monocristaline PV cells reach 20% of conversion efficiency UPC c‐Si solar cell: 21.5 % !!! T4 (2) - 18 T4 (2) - 19 4.2. Components of PV systems FISE 4.2. Components of PV systems   4.2.1. Assembly  of solar cells to form arrays 4.2.2. Standard PV Modules 4.2.3. Interconnection of Modules 4.2.4. Batteries FISE 4.2.1. Assembly of solar cells to form arrays  PV module PV generator PV cell Cells are assembled into modules...     … and modules are assembled into arrays (PV generator) T4 (2) - 20 FISE T4 (2) - 21 4.2.1. Assembly of solar cells to form arrays Series Connection of solar cells • Solar cells in series Isc = Isc1 = Isc2 = Isc (worst cell) Voc = Voc1 + Voc2 The limit of the output  current  available in a  series connection  of solar cells is imposed by the   worst solar cell FISE I=I1=I2 + V1 + V2 - + V=V1+V2 Load - I T4 (2) - 22 4.2.1. Assembly of solar cells to form arrays Shunt connection of solar cells 1           2 I=I1+I2 • Solar cells in parallel Isc = Isc1 + Isc2 Voc = Voc1 = Voc2 = Voc (worst cell) The limit of the output  voltage  available in a  shunt connection  of solar cells is imposed by the   worst solar cell Load I1 + V=V1=V2 I2 - FISE 4.2.1. Assembly of solar cells to form arrays T4 (2) - 23 FISE 4.2.2. Standard PV modules T4 (2) - 24 Photovoltaic modules are composed of combinations of parallel and  series connections of solar cells and eventually bypass diodes T4 (2) - 25 4.2.2. Standard PV modules FISE PV module: Ns solar cells in series in a string Np solar cell strings in parallel VM  NsV VocM  NsVoc IM  NpI IscM  NpIsc Rs M  Solar Cell Rs Ns Rs Np + Id V Rp I L - Rp   IL  Isc I  Isc  I0 (e V IRs nVT  1) IM IscM   I0 (e Np Np VM IM Np RsM  Ns Np Ns T4 (2) - 26 4.2.2. Standard PV modules FISE PV Module equation  IM IscM   I0 (e Np Np Solar Cell in open circuit: VM IM  RsM Ns Ns nVT IM IscM IscM (e   Np Np Np  1) VM IM  RsM Ns Ns nVT (e VocM nVT Ns  1) Isc I0  (e Voc nVT  1) IscM I0  Np (e VocM nVT Ns  1) neglecting the two unity terms IM  IscM (1  e  1) nVT VM  IM RsM VocM nVT Ns ) Current‐voltage characteristic of the PV module  1) 4.2.2. Standard PV modules FISE T4 (2) - 27 Temperature effects on the PV module equation Tcell = Ta + 0.035 G STC  :  IscMr , VocMr IscM  } G is the irradiance in W/m2 STC are the standard test conditions  under which a module is typically  tested Ta, Tcell are the ambient and solar cell  temperatures I IscMr G   scM (Tcell  Tr ) 1000  T  I  V VocM  VocMr   ocM (Tcell  Tr )  VT ln scM   T   IscMr  FISE 4.2.2. Standard PV modules T4 (2) - 28 FISE 4.2.2. Standard PV modules T4 (2) - 29 FISE 4.2.2. Standard PV modules T4 (2) - 30 FISE 4.2.3. Interconnection of Modules T4 (2) - 31 Module Generator Scaling procedure: Array of NsG modules in  series and NpG in parallel  FISE I G = N pG I M V G = N sG V M 4.2.3. Interconnection of Modules PV Generator Maximum Power Point : ( VmG, ImG ) I mG  G  dI scM  N pG  I mMr  Gr  dT  VmG   I I  mM  N sG N sVT ln1  scM   I scM   M means Module m means maximum power point   (Tcell  Tr )      VocM   e N sVT  1   I R     mM sM     T4 (2) - 32 4.2.4. Batteries FISE T4 (2) - 33 Lead‐acid batteries are most commonly used energy storage elements for stand‐ alone photovoltaic systems:  ‐ Low cost per Kw∙h.
‐ Weight doesn't matter.
‐ Widely distributed, can take advantage of other industries.
In some cases, as in PV low power applications, nickel‐cadmium batteries can be a  good alternative to lead‐acid batteries despite their higher cost.
Lead‐acid batteries are formed  by two plates, positive and  negative, immersed in a dilute  sulphuric acid solution.  The positive plate, or anode, is  made of  lead dioxide ( PbO2 ) and the negative plate, or  cathode, is made of  lead (Pb).  4.2.4. Batteries FISE Lead‐acid battery Total  reaction at the battery PbO 2  Pb  2 H 2 SO 4 disch arg e    ch  arg e Battery Operation modes 3 saturation 2 .5 overcharge 2 Voltage [V] discharge charge underdischarge 1 .5 1 0 .5 0 0 5 10 15 20 Tim e [h] 25 30 35 2 PbSO 4  2 H 2 O T4 (2) - 34 T4 (2) - 35 4.2.4. Batteries FISE Lead‐acid battery main parameters 1 ‐ Battery  Nominal Voltage, Vbat 2 ‐ Charge or Discharge rate: Defined as the relationship between the nominal capacity of the  battery and the charge/discharge current values.  In the case of a discharge, the discharge rate is the time needed  for the battery to discharge at a constant current.  3 ‐ Nominal Capacity: Total charge that can be obtained in a given period of time at a given temperature.
Cx for a discharge in x hours (Units in A∙h or W∙h): 50 Cx(Wh) = Cx(Ah) Vbat(V) 42 Ah I (A) 40 C1 = 42 Ah I1= 42 A 30 20 10 100 Ah 0 1 3 5 7 9 11 13 15 17 C20 = 100 Ah I20= 5 A 19 (hours) Battery capacity variation in function of discharge rate 4.2.4. Batteries FISE T4 (2) - 36 3 ‐ The state of charge , SOC: Ratio of the battery available charge  at a given time  divided by   the maximum capacity.
SOC =  Q/ C 0 ≤ SOC ≤ 1 SOC(%) =  Q/ C  100 4 ‐ Depth of discharge DOD =  1‐SOC ...